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Abstract
An exact formula is given for the probability that there exists a spanning cluster
between opposite boundaries of an annulus in the scaling limit of critical
percolation. The entire distribution function for the number of distinct spanning
clusters is also derived. These results are found using Coulomb gas methods.
Their forms are compared with the expectations of conformal field theory.

PACS numbers: 02.50.Cw, 05.40.−a, 05.50.+q, 64.60.Ak, 11.25.Hf

Since Langlands et al [1] conjectured on the basis of numerical evidence that crossing
probabilities between two non-overlapping segments of the boundary of a simply connected
region should be conformally invariant, there has been intense interest in the scaling limit
of two-dimensional percolation [2]. In [3], it was shown that this invariance was implicit in
ideas of the conformal field theory, which in addition yielded an explicit formula. Further
exact formulae were conjectured, by Watts [4] for the probability of a simultaneous left–right
and up–down crossing, and by Pinson [5] for various crossing probabilities on the torus. The
latter work used so-called Coulomb gas methods [6], which had been developed for more
general two-dimensional critical systems, in parallel with those of conformal field theory. In
[7], results were conjectured for the asymptotic behaviour of the probabilities that at least Nc

distinct clusters cross either a rectangle or an annulus, using earlier conjectures of Saleur and
Duplantier [8]. In [9], among other results, a prediction was given for the mean number of
crossing clusters in the opposite limit, when this number is large.

Meanwhile, starting from another approach, Schramm [10] conjectured that the scaling
limit of percolation hulls is generated by stochastic Loewner evolution (SLE6). From this
many results follow [11], including the original crossing formula and the exponents in [7].
Finally, Smirnov [12] proved the original crossing formula for site percolation on the triangular
lattice, and hence the validity of the SLE6 approach to percolation [13].

In this letter we refine the results of [7] for the annulus, presenting results for a general
value of the modulus. Consider a critical percolation problem in a non-simply connected
region of the plane with the topology of an annulus. The boundaries are assumed to be
suitably smooth. The interior of this region may be conformally mapped into the interior
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of a circular annulus R1 � |z| � R2, with modulus q̃ ≡ (R1/R2), or into the rectangle
(0 � x < �, 0 < y < L) with the edges at x = 0 and x = � identified, and q̃ = e−2πL/�. A
crossing (or spanning) cluster is one which contains a path connecting the opposite boundaries.
Let P(Nc) be the probability that there are exactly Nc non-overlapping such clusters. When
Nc = 1, it is also possible for the cluster to wrap around the x-cycle on the annulus. By
convention, we do not count such clusters as spanning.

1. Results

The crossing probability is
∞∑

Nc=1

P(Nc) =
√

3

∑
r∈ Z

(
q̃12r2+4r+ 1

4 − q̃12r2+8r+ 5
4

)
∑

r∈ Z

(
q̃12r2+2r − q̃12r2+10r+2

) . (1)

Furthermore, we have an explicit expression for P(Nc) for Nc � 1:

P(Nc) = 3Nc− 1
2

22Nc−1

∞∏
n=1

(1 − q̃2n)−1
∞∑

s=0

As(Nc)q̃
(Nc+s)2

3 − 1
12 (2)

where

As(Nc) = (−1)s
Nc+s∑
r=s

(
r

s

)(
2Nc + 2s

2r

)
. (3)

These results may be transformed into other expressions using various theta-function identities.
For example, in terms of the conjugate modulus q ≡ e−π�/L, we find

∞∑
Nc=1

P(Nc) =
∑

r∈Z

(
q6r2+r + q6r2+5r+1 − 2q6r2+3r+ 1

3
)

∑
r∈Z

(
q6r2+r − q6r2+5r+1

) . (4)

Note that for L/� > 1
2 only a few terms need be kept in (1) and (2) for great accuracy, while

for L/� < 1
2 the same is true of (4).

Both the numerator and denominator of (1) and (4) are specializations of Jacobi theta
functions, and hence may be written as infinite products. In terms of Dedekind’s eta function
η(τ) ≡ q̃1/24 ∏∞

n=1(1 − q̃n), with q̃ ≡ e2π iτ , we find
∞∑

Nc=1

P(Nc) =
√

3
η(τ)η(6τ )2

η(3τ )η(2τ )2
= η(−1/τ)η(−1/6τ )2

η(−1/3τ )η(−1/2τ )2
. (5)

2. Coulomb gas method

Although we shall later argue that these results are indeed conformally invariant, it is simpler
to first set the problem up in the periodic rectangle defined above. Consider a portion of a
regular triangular lattice covering the rectangle, oriented as shown in figure 1, so that, if the
lattice spacing is a, there are 2(�/a) + 1 columns and (2/

√
3)(L/a) + 1 rows of the lattice.

Periodic boundary conditions are imposed in the x-direction, so that the rightmost column is
identified with the leftmost one. Consider a critical site percolation problem on this lattice, in
which sites are independently coloured red or blue with equal probability. A (blue) cluster is a
set of blue sites in which every site is connected to every other by a path which traverses only
blue sites. A spanning cluster is one which contains at least one site on the edge y = 0 and
one site on the edge y = L. For a particular assignment of colours, let Nc be the number of
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Figure 1. A triangular lattice with � = 8a, L = 7(
√

3/2)a. The leftmost and rightmost columns
are to be identified, so the lattice has the topology of an annulus. Typical oriented spanning and
non-spanning open hulls are shown, together with their boundary weights.

distinct non-overlapping spanning clusters. We are interested in the distribution P(Nc) of the
random variable Nc in the continuum limit a → 0 for fixed L and �. Scale invariance implies
that it should depend only on �/L.

Instead of considering the clusters, we may equivalently consider the configuration of
hulls which separate them. A hull is a path on the dual lattice (in this case a honeycomb
lattice) which separates blue sites from red sites. In our case, hulls can either form closed
paths or be open, each end terminating at an edge. Open hulls which have ends terminating
on different edges are called spanning hulls. The number of such spanning hulls is nc = 2Nc.
An allowable configuration of hulls is one in which each dual site is connected to either 0 or
2 neighbouring dual sites, except for the edge sites, which may be connected to either 0 or
1 neighbouring site. In addition, the number of spanning hulls must be even. The correct
weights are achieved by weighting all allowable hull configurations equally.

A related model is the O(1), or Ising, model on the dual lattice, at zero temperature. In this
model Ising spins s(r) = ±1 reside at each site r of the honeycomb lattice, and the partition
function is

ZO(1) =
∏

r

∑
s(r)=±1

∏
(r,r′)

1

2
(1 + ts(r)s(r′)) (6)

where the latter product is over all nearest neighbour pairs (r, r′). The ‘high-temperature’
expansion in powers of t, afterwards setting t = 1, reproduces exactly the hull configurations
of the percolation model in the case when the number of spanning hulls, denoted by nc,
is even and equal to 2Nc, but in the O(1) model nc may also be odd. Evidently when
t = 1, ZO(1) = 2. Denoting by p(nc) the probability that there are exactly nc spanning hulls,
we have P(Nc) = 2p(2nc). The first factor of 2 arises because to each allowable configuration
of hulls there correspond two assignments of colours. We can construct the generating function
by weighting each spanning hull by a factor u. Denoting the corresponding partition function
by Z(u), we therefore have

∞∑
nc=0

p(nc)u
nc = 1

2
Z(u) (7)
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∞∑
Nc=0

P(Nc)u
2Nc = 1

2
(Z(u) + Z(−u)). (8)

Each hull may be assigned a random orientation, so that to each configuration of H hulls
correspond 2H configurations of oriented hulls. The weights for each orientation should be
chosen so that they sum to unity (resp. u) for each (spanning) hull. For closed hulls, it is
conventional [6] to assign a ‘weight’ e± iχ to each dual site at which an oriented hull turns
through an angle of ±π/3, where χ = π/18 is chosen so that the total weight for a closed
hull, on summing over its orientations, is e6 iχ + e−6 iχ = 1. However, this does not correctly
account for closed hulls which wrap around the x-cycle of the annulus, which would have
weight 1 + 1 = 2 according to this scheme. Such configurations can only occur when nc = 0.
Thus, for the time being, we assume that nc � 1. The case nc = 0 may be inferred afterwards
using the overall normalization of the partition function.

For oriented hulls which terminate at an edge, let us assign the same weights as above for
internal turnings, and in addition weights α or β to their extreme segments, as shown in figure 1.
By choosing

α =
(

cos 6χ

cos 3χ

)1/2

e3 iχ ′/2 and β =
(

cos 6χ

cos 3χ

)1/2

e−3 iχ ′/2 (9)

hulls which begin and end on the same edge are counted with a weight (cos 6χ/ cos 3χ)(e3 iχ +
e−3 iχ ) = 1, as required, while spanning hulls carry a weight (cos 6χ/ cos 3χ)(e3 iχ ′

+ e−3 iχ ′
),

so that we should identify

u ≡ cos 3χ ′/ cos 3χ. (10)

The factor (cos 6χ/ cos 3χ)1/2 coming from (9) is raised to a power E which is the total
number of ends of open hulls, whether they be spanning or not. An open end occurs every
time the neighbouring sites of the triangular lattice are of opposite colours. Since these are
independently distributed, E is a sum of O(2�/a) independent1 random variables, and each
taking the values 0 or 1 with equal probability. In the continuum limit a/� → 0, therefore,
(cos 6χ/ cos 3χ)E/2 ∼ (cos 6χ/ cos 3χ)�/2a , with probability 1. These contribute to the
non-universal edge free energy, but not to the universal dependence on �/L.

Let Z(3χ, 3χ ′) be the partition function of the loop gas with the above phase factors but
ignoring the factors of (cos 6χ/ cos 3χ)1/2. Then

∞∑
nc=1

p(nc)u
nc = C1(Z(π/6, χ ′) − Z(π/6, π/2)) (11)

where C1 is a non-universal number and the second term, with cos 3χ ′ = 0, subtracts out the
contribution with nc = 0 which is incorrectly counted by the above scheme.

The configurations of the oriented loop gas are in 1-1 correspondence with those of a
height model on the original triangular lattice. These heights h(r) are conventionally chosen
to be in πZ, and are defined by the conditions that h = 0 at some fixed site, say (0, 0), and that
it increases (decreases) by ±π each time an oriented hull segment is crossed. On the annulus,
however, we must also allow for possible jumps �h > |π | in h across some path which spans
the annulus, say along x = − 1

4a. The factors e±3 iχ ′/2 then accumulate to e3 iχ ′�h/2π on each
edge.

So far, everything is finite and exact. In the conventional Coulomb gas method [6], one
now assumes that in the continuum limit (a/�, a/L) → 0 we may replace h(r) by a real-
valued field, with a Gaussian measure ∝ exp (−(g/4π)

∫
(∂h)2 dx dy). For the models we are

considering, g is fixed to be 1 − (6χ/π) = 2
3 . We shall assume that the same is true on the

1 Almost independent, since the sum along each edge must be even.
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annulus, except that we must allow for a possible discontinuity around the x-cycle. Thus we
write

h(x, y) = (pπ/�)x + h̃(x, y) (12)

where p ∈ Z and h̃(x + �, y) = h̃(x, y). Substituting in this decomposition,

Z(3χ, 3χ ′) = C2Z(�/L)
∑
p∈ Z

e3 iχ ′p e−(g/4π)(pπ/�)2�L (13)

where Z ∝ ∫ Dh̃ e−(g/4π)
∫
(∂h̃)2 dx dy is the universal part of the partition function of a free field

on the annulus, with Neumann boundary conditions, and with the constraint that h̃(0) = 0,
which removes the zero mode. The factor C2 is non-universal, and reflects the contribution of
the short-distance degrees of freedom which are integrated out in the coarse-graining assumed
in adopting the Gaussian measure. It is expected to depend exponentially on the total area
(�L/a2) and the perimeter (2�/a), but is not expected to have non-trivial dependence on the
modulus �/L.

The c = 1 partition function Z is well known [14]. Writing it as Tr e−�ĤL , where ĤL is
the quantum Hamiltonian for a free field on circle of perimeter L, it is

∏∞
n=1

∑∞
N=0 e−�En,N

where En,N = (
N + 1

2

)
(nπ/L). The leading term as �/L → ∞ comes from N = 0 and

is proportional to
∏∞

n=1 e−(π�/2L)n. However, this must be regularized. Apart from a cut-
off dependent term which can be absorbed into C2, it gives e−(π�/2L)ζ(−1) = q− 1

24 where
q ≡ e−π�/L. The terms with N � 1 give

∏∞
n=1(1 − qn)−1. The zero-mode h̃ = constant

is suppressed in the functional integral over h̃ since we set h̃(0) = 0. However going from
this constraint to one on the n = 0 mode introduces a Jacobian proportional to (L/�)1/2 [14].
Finally we have

Z = C3(L/�)1/2q− 1
24

∞∏
n=1

(1 − qn)−1. (14)

Equation (13) may now be transformed using the Poisson sum formula:

Z(3χ, 3χ ′) = C4Z
∑
r∈Z

∫ ∞

−∞
dp e2π ipr e3 iχ ′p e−(πg/4)(L/�)p2

(15)

= C5q
− 1

24

∞∏
n=1

(1 − qn)−1
∑
r∈Z

e−((3χ ′+2πr)2)/πg)(�/L). (16)

Note that the (L/�)1/2 factors cancel.
Setting now g = 2

3 and subtracting the contributions with 3χ ′ = π
6 and 3χ ′ = π

2 , we
arrive, after some algebra, at the result for the O(1) model

∞∑
nc=1

p(nc) = C5

∑
r∈Z

(
q6r2+r − q6r2+3r+ 1

3
)

∏∞
n=1(1 − qn)

. (17)

Because our height model phase assignments incorrectly count loops which wrap around
the x-cycle, we cannot directly compute the contribution with nc = 0 and, therefore, cannot fix
C5 by demanding that

∑∞
nc=0 p(nc) = 1. However, since

∑∞
Nc=0 P(Nc) = 2

∑
Nc

p(2Nc) = 1,
it follows that

∑∞
n=0 p(2n + 1) = 1

2 , and we can compute this in terms of Z(u) − Z(−u) ∝
Z(π/6, π/6) − Z(π/6, 5π/6). This gives

∑
nc odd

p(nc) = 1

2
C5

∑
r∈Z

(
q6r2+r − q6r2+5r+1

)
∏∞

n=1(1 − qn)
= 1

2
C5 (18)
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where the last equality follows from Euler’s pentagonal number theorem [15]. We conclude
that C5 = 1. (17) is then our main result for the probability of a crossing in the O(1) model.

For percolation, we need to compute 2
∑∞

Nc=1 p(2Nc) ∝ Z(π/6, π/6)+ Z(π/6, 5π/6)−
2Z(π/6, π/2). This gives the main result (4).

With the knowledge that C5 = 1, we may now transform these results back into series
in q̃ ≡ e−2πL/� = e2π iτ . Using the identity η(τ) = (−iτ )−

1
2 η(−1/τ), and the Poisson sum

formula, we find

Z(π/6, χ ′) = 1

2
√

3

∞∏
n=1

(1 − q̃2n)−1
∑
p∈ Z

e3 iχ ′pq̃(p2−1)/12. (19)

Thus for the crossing probability in percolation we have
∞∑

Nc=1

P(Nc) = 1

2
√

3

∞∏
n=1

(1 − q̃2n)−1
∑
p∈Z

(
cos

πp

6
+ cos

5πp

6
− 2 cos

πp

2

)
q̃ (p2−1)/12. (20)

The expression in parentheses takes the value 3 if p = ±2 (mod 12), the value −3 if
p = ±4 (mod 12), and vanishes otherwise. This leads to the first form (1) of our main
result. The numerator in this expression may also be written as [16]∑
n∈ Z

(−1)nq̃3n2+2n+ 1
4 = q̃

1
4 ϑ4(2τ | 6τ ) (21)

= q̃
1
4

∞∏
n=1

((1 − q̃6n)(1 − q̃6n−1)(1 − q̃6n−5)) (22)

which, after a few more manipulations, gives (5).
In order to find an explicit formula for p(nc), we should solve (10) for e3 iχ ′

in terms of u,
which gives

e3 iχ ′ = eiπ/2((1 − (
√

3u/2)2)1/2 − e− iπ/2(
√

3u/2)). (23)

Substituting this into (19), expanding in powers of u, and identifying the coefficient of u2Nc ,
then leads to the result in (2) and (3).

A further check on our results comes from differentiating (11) with respect to u at
u = 0 to obtain the mean number of crossing clusters. In the limit � 	 L we find
E[Nc] ∼ (

√
3/4)(�/L), in agreement with [9], and with a rigorous result of Smirnov [12] for

the triangular lattice.
If instead of the periodic rectangle we have a more general annular region, in order that

spanning and non-spanning hulls be counted with their correct weights αi and βi in (9) must
be modified by factors e± iθ/6, where θ is the (signed) angle which the tangent vector at the
boundary makes with the x-axis. However, since the boundaries form simple closed curves,
these extra factors accumulate to unity on each edge. The calculation then proceeds as before,
yielding a conformally invariant result2.

3. Relation with conformal field theory

The crossing probability
∑∞

nc=1 p(nc) in the O(1) model may be expressed as a difference
Z++ − Z+− of partition functions in the n → 1 limit of the O(n) model, where Z+− denotes
2 Under a scale transformation r → λr, a partition function Z behaves in general as λcχ/6, where c is the conformal
anomaly number, and, for a smooth boundary, χ is the Euler number [17]. The latter vanishes for the annulus. If there
are points on the boundary where it is not differentiable, however, there may be additional contributions [17]. In our
case, these cancel between the c = 1 partition function Z and the Coulomb energy of the charges which accumulate
at these singularities. This cancellation is connected with the fact that the overall conformal field theory has c = 0.
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the partition function with the spins fixed in different directions on opposite edges, and Z++

with them fixed in the same direction. Evidently Z++ = 1, so that, from (17)

Z+− =
∑

r∈ Z

(
q6r2+3r+ 1

3 − q6r2+5r+1
)

∏∞
n=1(1 − qn)

. (24)

According to the general boundary conformal field theory (BCFT) [18], any partition function
like this should be expressible in the form

∑
h dhq

h, where h runs over all boundary scaling
dimensions and dh is a degeneracy factor. For unitary conformal theories this must be a non-
negative integer, but this need not be true here. From (24) we identify the smallest value of h
to be 1

3 : this is identified in BCFT [18] as the scaling dimension of the ‘boundary condition
changing operator’ φ+|−. This is consistent with the analogous result for percolation: see
[3]. From (24) we see there is also an operator with h = 1. This we tentatively identify as
introducing a hull which wraps around the x-cycle in the O(1) model, but does not touch either
edge. This should carry an O(n) index c which is not equal to either + or −, otherwise it could
be absorbed at the edges. There are n − 2 = −1 possibilities for c, which accounts for the
fact that this state occurs with degeneracy (−1) in (24).

The powers (4p2 − 1)/12 in (2) are the well-known bulk multi-hull dimensions for
percolation [8]. In accordance with general ideas of BCFT [18], (24) may be written as
a linear combination of Virasoro characters χh(q) of irreducible representations of highest
weight h, and, equivalently, as a combination of characters χh(q̃

2), related by a modular
transformation. This affords an interesting example of how BCFT works in a non-minimal
theory. The details will be described elsewhere [19].

4. Comparison with numerical work

Shchur [20] has estimated P(Nc) for Nc = 2, 3 and L = �. For this value of q̃ = e−2π it is
sufficient to keep only the first term in (2), P(Nc) ≈ 3Nc− 1

2 q̃(4N 2
c −1)/12, which gives

P(2) = 2.02 . . . × 10−3 (exact) 2.0(4) × 10−3 (measured) (25)
P(3) = 1.71 . . . × 10−7 (exact) 1.4(5) × 10−7 (measured). (26)

Our exact predictions fall within the (admittedly rather large) error bars.

5. Summary

We have given explicit results for the probability that Nc critical percolation clusters cross an
annulus. From the point of view of conformal field theory, these results are different from the
original crossing formula [3] in that they involve partition functions rather than correlation
functions of boundary operators. The exponents appearing in (2) have already been derived
in the limit of large modulus using a radial version of SLE [11, 13], and it would be very
interesting to use these methods to verify the more detailed results of the present letter.
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